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A DEEP LEARNING NETWORK FOR PARALLEL SELF-DENOISING AND 
SEGMENTATION IN VISIBLE LIGHT OPTICAL COHERENCE TOMOGRAPHY OF 
HUMAN RETINA: SUPPLEMENTAL MATERIALS

1. Loss curves and explanation
Our data was meticulously split into training, validation, and test sets, maintaining an 
appropriate ratio. We ensured that they had a similar data distribution, encompassing most 
regions of the retina. During our experiments, we closely examined the loss curves and 
accuracies for both tasks, including Dice for segmentation and PSNR/SSIM for denoising. 

Our experiments revealed that both training and validation loss curves demonstrated a 
generally steady decrease and eventual convergence (Fig. S1). The trend was similar across our 
experiments. We observed slight fluctuations in the validation loss during the initial stages of 
training for our segmentation model (Fig. S1a). These fluctuations can likely be attributed to 
1) The complexity of the model we've employed may lead to initial overfitting of the training 
data, causing temporary increases in the validation loss. However, as training proceeds, the 
model tends to generalize better, resulting in improved performance; 2) The validation set we're 
using may inherently contain some variability, which can manifest as minor fluctuations in the 
loss. This effect is more pronounced when the validation set is relatively small.

In addition, when separately considering denoising, we've noticed that the difference 
between the validation loss and the training loss is not substantially significant (Fig. S1b). This 
does not indicate underfitting, as underfitting typically results in a considerably large gap 
between the validation loss and the training loss. In this case, we speculate that the observed 
behavior may be attributed to 1) The N2V loss employed during unsupervised training may 
have characteristics that contribute to this phenomenon. 2) The relatively small size of the 
validation set may not pose a significant challenge to the model compared to the augmented 
training set.  

Fig S1. Exemplified training and validation curves for segmentation (a) and denoising (b), 
respectively. 



2. Impact of vessel shadow artifact from segmentation.   

Fig S2. Impact of blood shadow artifact. The red ellipse indicates the area of a large blood 
vessel casting a wide shadow artifact.


